3 research outputs found

    Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design

    Get PDF
    Building energy-efficient systems is one of the principal challenges in wireless sensor networks. Dynamic voltage scaling (DVS), a technique to reduce energy consumption by varying the CPU frequency on the fly, has been widely used in other settings to accomplish this goal. In this paper, we show that changing the CPU frequency can affect timekeeping functionality of some sensor platforms. This phenomenon can cause an unacceptable loss of time synchronization in networks that require tight synchrony over extended periods, thus preventing all existing DVS techniques from being applied. We present a method for reducing energy consumption in sensor networks via DVS, while minimizing the impact of CPU frequency switching on time synchronization. The system is implemented and evaluated on a network of 11 Imote2 sensors mounted on a truss bridge and running a high-fidelity continuous structural health monitoring application. Experimental measurements confirm that the algorithm significantly reduces network energy consumption over the same network that does not use DVS, while requiring significantly fewer re-synchronization actions than a classic DVS algorithm.unpublishedis peer reviewe

    Project E3 (E-Filter, E-Frame, E-Page)

    Get PDF
    E-Filter: Our E-flow air filtration system is designed solely from ewaste materials. It uses solar e-wastes to generate power and purifies the air from smoke, odor, toxins & dust by passing it through several designed filters. E-page: Check our e-wasterecycling ideas website (http://e-waste-recycle-idea.blogspot.com/) Use these simple ideas to use your old electronics, enjoy creating your new stuff by yourself, feel green and share your new ideas with others. E-Frame: We designed an eframe; a digital photo frame which displays photographs and movies in high resolution with voice.Ope

    Victim Localization and Assessment System for Emergency Responders

    No full text
    In minor to moderate natural and man-made disasters, such as earthquakes and fires, people may be trapped inside buildings and hurt by the disaster. Considering that trapped victims may be unconscious, there is a high demand by emergency responders to get information on the locations and physical statuses of trapped victims inside a building during a disaster. In this paper, a smartphone-based, in-building emergency response assistance system, named iRescue, is presented. The system is comprised of two subsystems: a Victim Positioning System (VPS) and a Victim Assessment System (VAS). The VPS uses the received signal strength indicator of Wi-Fi signals from multiple wireless access points with referencing a pre-established Wi-Fi fingerprinting map of a building. The VAS uses patterns obtained from measured 3D acceleration changes by status of a victim. A Naive Bayes classifier is employed for both VPS and VAS: for localization in between the fingerprinting map and for recognition of activities to be used for status assessment. The performance of the VPS has been validated by a localization test on a complex building. The VAS has been validated by activity simulation test with five people and real-time monitoring of a person equipped with an activity recording device. (C) 2015 American Society of Civil Engineersclose
    corecore